A SLIGHTLY TWISTED RADIAL-SLOT JET DISCHARGING FROM
AN ANNULAR SOURCE OF FINITE DIAMETER

V. G. Shakhov UDC 532.522

An approximate solution is presented for the problem of laminar and turbulent slightly twisted
radial-slot jets of an incompressible liquid, discharging from an annular source of finite di-
ameter,

In all solutions for the problem of laminar and turbulent slightly twisted radial-slot jets ([1, 2], etc.),
it was assumed that the radius of the annular source is zero (Fig.1la), Consequently, the above-enumerated
solutions satisfactorily describe the actual flow only at comparatively great distances from the nozzle, ex-
ceeding the nozzle radius several times over,

Ginevskii [3] solved the problem of the discharge of laminar and turbulent untwisted jets from an an-~
nular source of finite radius.

Below we will attempt to extend the Ginevskii results to slighfly twisted jet flows, as shown in Fig. 1.

We should note that for the flows shown in Fig. 1b, as the radius of the annular source tends to zero,
the resulting solution changes into an asymptotic solution that is quite close, in terms of numerical values,
to the above-cited solutions [1, 2]. It isnatural that this solution, derived for the problem (Fig.1c), is val-
id in a region that is not too close to the axis of symmetry where the jets collide, where pressure gradients
are developed, and where the flow apparently becomes unstable,

The boundary-layer equations for an isobaric slightly twisted jet are written in cylindrical coordinates
in the form

g 14y (1)
dx dy p dy
dw do | ww _ 1 dv,
u—ci;+vdy+ x p dy’ (2
duxy | d(vx) —0 3)
dx + dy )

Having integrated (1) and (2) over the boundary layer of finite width and having eliminated the velocity
v by means of (3), we find the invariance of the momentum of the jet in the radial direction and ofthe angular
momentum of the jet in the circumferential direction '

A

I = 2npxj' ¢ (y) dy = const, (4)
28y
A
M= anxZS u (y) w (y) dy = const. (5)
Za

Having presented the profiles for the friction-stress components across the jet in the form of poly-
nomials of degree y and having determined the coefficients of these polynomials from the boundary condi-
tions which follow from the differential equations of motion (1)~(3), we have
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Fig.1. Flow diagram: a) point source; b) external radial-
slot jet; c) internal radial-slot jet.

Ty = pumu,'nalyl (l - yi)z» (6)
Ty = Pl (w,',, +3’f) 8y (1 — )* ™
Relations (6) and (7) are identically valid for both the laminar and the turbulent jet.

In conjunction with the corresponding formulas for the components of the shearing stress and with the
integral relations (4) and (5), Egs. (6) and (7) make it possible to close the problem completely.

We note that (1) is independent of (2) and corresponds in accuracy to the case of flow in a jet without
twisting [3]. The same applies to (4) and (6). We will therefore use all of the results for the radial direc-
tion in the following, without any further reference to [3].

In the case of laminar flow in the jet
T, = pdu/dy, T, = pdo/dy. ®)
This profile for the velocity u has the form

B =162+ 83— 342 ©)

Um

Changes in the axial velocity uy, and in the boundary-layer thickness &, are subject to the following
quantitative relationships:

1/3
U, =0.J1686 (g) / ( + xg T 1) -1/3, . (10)
j
% = 8.025 (%2)"3( + 23T 1), (11)

j 1

The upper signs correspond to the case of an external-slot jet (see Fig. 1b); the lower signs corre-
spond to the case of an internal radial-slot jet {see Fig.1c), and for the first we have x, = 1, while for the
second we have 1 = x, > 0.

Substituting (8) into (7) and integrating for the conditions w = wy, wheny = 0 and w = 0 when y = &,,
we have

L =1 —6y2 + 853 — 34, (12)
wm
1 , W,

it follows from a comparison of (9) and (12) that the velocity profiles in the direction of the x-axis and the
circumferential direction are identical.
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Fig. 2. Jet thickness. For laminar flow curve 1
has been calculated from (11) and (17); curve 2
has been calculated from (20). For turbulent flow
curve 3 has been calculated from (26) and (28),
and curve 4 has been calculated from (30).

Equation (13) enables us to determine the change in the jet parameters in the circumferential direc-
tion. From the integral condition (5), (9), and (12) we have

8, = Ky/4ny (8) XX, (14)

—— -2 -3 ___ -4 > 1),
v(s)={(2/5) (8/35)e7 + (1/T)e™ — (1/35)e €>1)

o [(2/5) — (8/85)e* + (T — (1/3B)Y] (< ). (1)

After substitution of (14) into (13) and after integration in limits from xj to x and from Wy = © to wy
in the assumption that &€ = 6,/6, = const and, consequently, that ¥(g) = const, we find

00532 ( KiN2f 4 \UE — -
o () (R e e
After substitution of (16) into (14) we have
8, V2R —
—2 =8, —_— + x3 T 1)28 Jx,. 17
; 8025(&) (+ %8 F 1) /5, (17)
From (11) and (17) we see that
g = 8,/8, = const = 1, (18)

which was what had been assumed prior to the integration of (16).

When x, > 1 (this condition i5 equivalent to the case xj — 0), formulas (10), (11), (16), and (17) are
markedly simplified:

K2\13 1
u,, = 0,186 (Tl> - (19)
2 \1/3
8, =08, =8025—| = 20
1 2 (Ki) ( )
Kg 12 v s
The corresponding formulas of the solutions cited in [2], in our notation, have the form
K3\ g
u,, = 0.193 (——‘) —_ (22)
v x
Kg )1/2 v )1/6 1

and differ from (19) and (21) only in their numerical coefficients.
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Fig.3. Change in the velocities uy,, and wy, for lam-
inar flow (a) and for turbulent flow (b): a: 1) accord-
ing to (10); 2) according to (19); 3) according to (22);
4) according to (16); 5) according to (21); 6) accord-
ing to (23); b: 1) according to (25); 2) according to
(29); 3) according to (32); 4) according to (27); 5) ac-
cording to (31); 6) according to (33).

Figure 2 shows the functions

Ay = %) (K13 = (8,/) (KW',

calculated from (11), (17), and (20).

Figure 3a shows the graphs of the functions

v \3 v \2 ( K2\V6
Azzumxj (712-) M A3=wmxj ('ﬁ) (_‘V«l) ,
27/

calculated from (10), (16), (19), and (21~-23).

It follows from Fig. 3a that when x; > 2.5 the calculations with all of the formulas are close to each

other.

However, the difference in the results of the approximate and exact solutions for a slightly twisted

radial-slot jet discharging from a point source (formulas (19), (21)~(23)) is not great and falls within the
limits of conventional differences between the theory for a layer of finite thickness and the theory for an

asymptotic layer.

In the case of turbulent flow in a jet with slight twisting we can use the familiar formula for the Rey-

nolds stresses
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Ty = pubyuy, Oufly, T, = pudyu,, 0v/dy.

(24)



Substituting (24) into (6) and (7), and carrying out the transformations similar to those which were used
above for the laminar jet, we derive (9) and (12) from [3] for the velocity profiles:

0.152 i2 — vt

n =) T (25
LAY T
o= 12 (% F 5, (26)

]

and instead of (16), integrating within the same limit from xj to x and from wy = < to wp,, retaining the
earlier assumption that v (g) = const, we find

_ 0.0435 Kg \ __%_ 172 1 2 — 1y—=1/2 27
e e %) T &

and it thus follows from (12) that
76%. = 120 (4 % T ). (28)

j
From (26) and (28) we have the earlier result shown in (18).

We note that since the jet is slightly twisted, according to 3], we can assume that »« = 0,0125,

From (25)-(28) when x; > 1 (or, what is the same, xj — 0) we have

K 1/2 1
um=0.152(71) - (29)
8y = 8, = 12ux, (30)
Ky V[ = N2 1
—0 2( LTI AL U 31
@, 015\,‘)(&/\ . (31)
The corresponding formulas for the solution given in [2] for uy and wy, have the form
_ LAY
- Ko \( %\ L 33

and they differ from (29) and (30) only in the values of the numerical coefficients.

Figures 2 and 3b show the changes in the following quantities:

%)C]' HX j

A = w,,x; (_K"_Z_) (_1%)1/2 .

AN

6 8 172
A== As*"“m"j(%) ’

In conclusion, we know that it follows from Fig. 3a and b and from (16) and (27) that for an internal

radial-slot jet the twisting velocity wy, varies from « for xj = 1 to some minimum value of wf; for x; = xJ,
and it then increases to « when x, = 0.

It follows from (16) for the laminar regime that
Xy =27IR, w0, = 0.206 (KI)2 (K21,
For the turbulent regime we correspondingly find from (27) that
xy =212, wr = 0.304 (Kyx) (#/K)'72 .

NOTATION

I is the jet momentum;
Ky =I/p is the kinematic momentum of the jet;
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Ky = M/p
M
u, w, and v

um = w0, x);
wm = w(0, x);
U, = duy, /dy;

wm = dwp,/dx;
Xj '
Xo = X/Xj;

yi=y/6i(i=1,2);
61, Oy

A = min (8, 5y);
€ = 51/52

®

U

v=u/p

p
7y and T,

L DN
« e .
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is the kinematic angular momentum of the jet;
is the angular momentum of the jet;
are the velocity components along the x-axis, in the circumferential direction and along

the y-axis, respectively;

is the radius of the annular source;

are the half-thicknesses of the jet in the direction of the x-axis and in the circumfer-
ential direction, respectively

is the experimentally determined constant;

is the dynamic viscosity of the fluid;

is the coefficient of kinematic viscosity for the fluid;

is the density; o

are the shearing-stress components along the x-axis and in the circumferential direc-
tion,
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